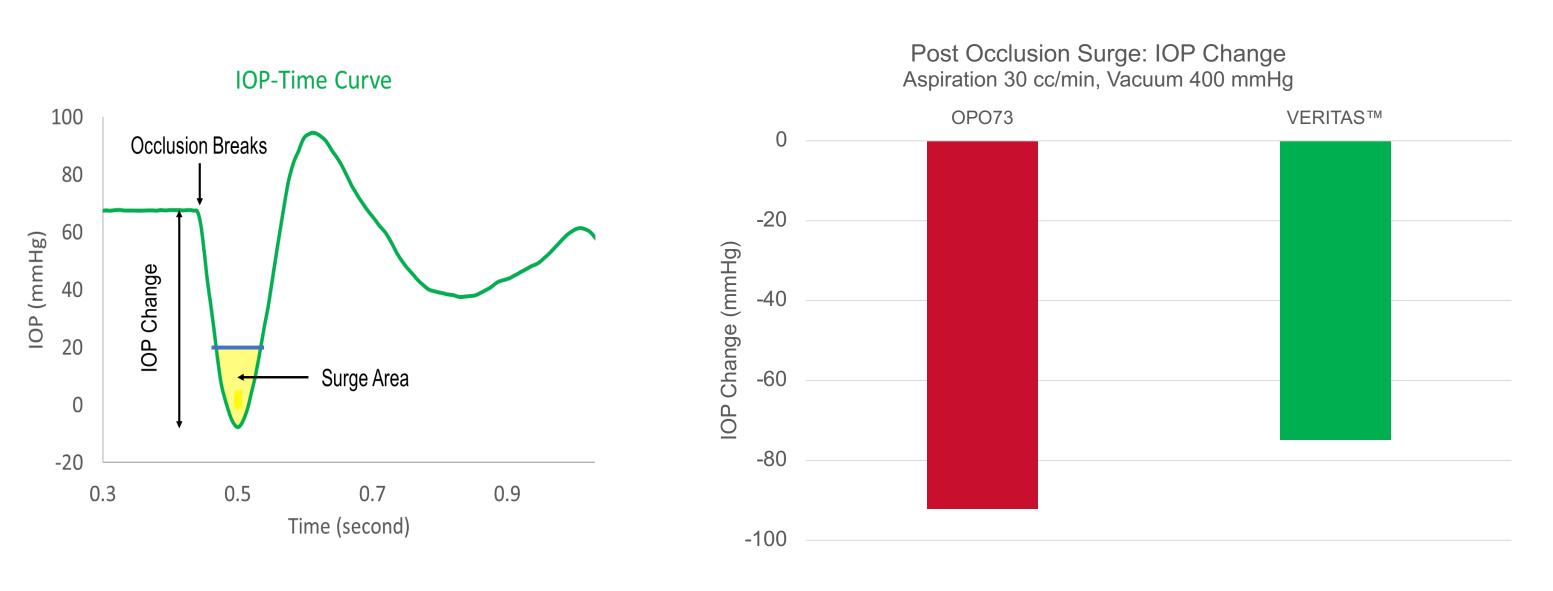

Post-occlusion surge performance of a new phacoemulsification system with small-bore, dual-durometer aspiration tubing

Internal diameter and compliance of aspiration tubing affect the post-occlusion surge (POS) performance. A new design of the fluidics packs with a small-bore, dualdurometer aspiration tubing was created. This study evaluates POS performance of the new packs with a new phacoemulsification console in a laboratory setup.

New Aspiration Tubing Design


Outer Soft Thick Layer Inner Layer

Test Setup

- New Phaco Console: J&J Vision VERITAS™ Vision System, in Peristaltic Mode
- ELLIPS® FX Phaco Handpiece
- Straight 20-Gauge Phaco Tip/Sleeve
- Bottle Height to generate 65 mmHg static intraocular pressure (IOP)
- Aspiration Flow: 30 cc/min
- Vacuum Settings: 200, 300, 400, 500, and 600 mmHg

DATA ANALYSIS

- Intra-ocular pressure (IOP) recorded continuously during occlusion and post-occlusion surge.
- IOP Change: the pressure drop from the static value during occlusion to the trough of the IOP curve post occlusion.
- Surge Area: the calculated area between the +20mmHg line and the IOP curve below this line. The surge area accounts for both amplitude and duration of the post-occlusion surge.
- Smaller numbers in IOP Change and Surge Area indicate better POS performance and chamber stability.

Jianbo Zhou, Ph.D. and Duru Han, M.Eng. Johnson & Johnson Surgical Vision, Inc., Santa Ana, CA, USA

Financial Disclosure: J. Zhou and D. Han are employees of Johnson & Johnson Surgical Vision, Inc.

PURPOSE

METHODS

Fluidics Pack Samples

Test Samples (N=6)	New Fluidics Packs: Johnson & Johnson Vision VERITAS™ Fluidics	Small-Bore, Dual- Durometer Aspiration Tubing 1.27 mm Inner Diameter
Control Samples (N=3)	Existing Fluidics Packs: Johnson & Johnson Vison OPO73 FUSION® Fluidics	Single Layer Aspiration Tubing 1.42 mm Inner Diameter

IOP Sensor Aspiration Pressure Sensor 2

Occlusion Valve

Rigid Eye Chamber

COMPARISON OF IOP CHANGES

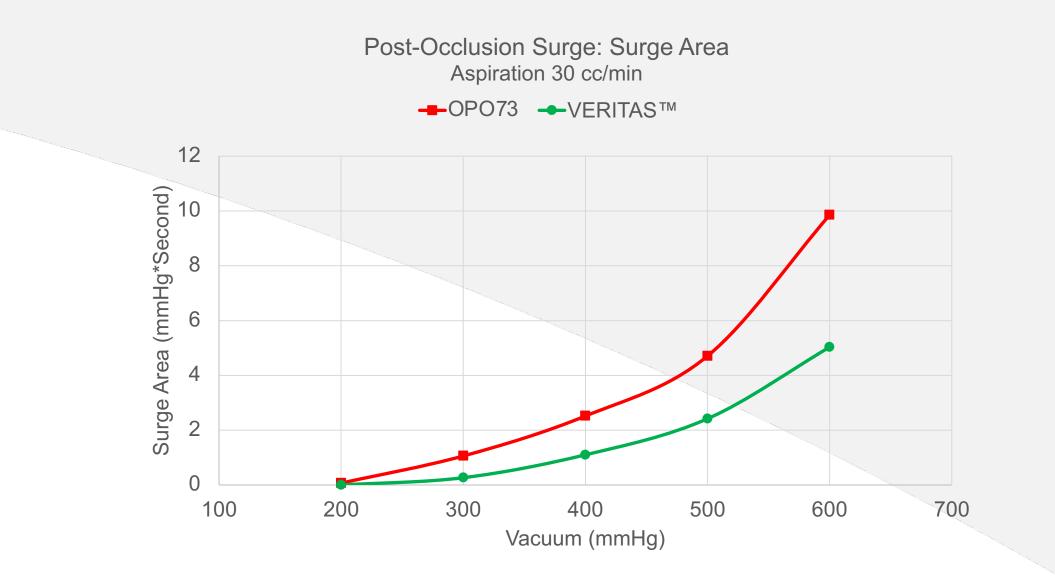
RESULTS ON SURGE AREAS

	Surge Area (mmHg*second)				
Vacuum (mmHg)	OPO73 (N=3)		VERITAS™ (N=6)		
	Mean	S.D.	Mean	S.D	
200	0.07	0.02	0.00	0.00	
300	1.06	0.03	0.27	0.18	
400	2.52	0.23	1.10	0.42	
500	4.71	0.68	2.42	0.50	
600	9.85	1.93	5.03	1.09	

SUMMARY

- At the aspiration flow of 30 cc/min and vacuum setting of 400 mmHg, VERITAS™ fluidics packs performed about 20% better in IOP Change than OPO73 packs.
- For the vacuum settings from 300 to 600 mmHg, VERITAS™ fluidics packs performed at least 45% better in Surge Area than OPO73 packs. The Surge Area was essentially zero at 200 mmHg vacuum for both types of fluidics packs.
- Statistically significant differences were observed between the OPO73 and VERITAS™ pack groups in IOP change and surge area in all vacuum settings, by performing T-Test on experimental data.

CONCLUSIONS


This study demonstrated that the new fluidics pack with small-bore, dual-durometer aspiration tubing performed much better than the existing fluidics pack in postocclusion surge in a new phacoemulsification machine in terms of the IOP change and the surge area in a laboratory setup, providing improved chamber stability.

References:

1. Sharif-Kashani et al.: Comparison of occlusion break responses and vacuum rise

- times of phacoemulsification systems. BMC Ophthalmology 2014 14:96
- 2. Zacharias J, Zacharias S: Volume-based characterization of postocclusion surge. J Cataract Refract Surg 2005; 31:1976–1982

COMPARISON SURGE AREAS

Acknowledgments Thanks to Chetan Nirkhe, Deep Mehta, and Adam Toner, Johnson & Johnson Surgical Vision, Inc. for the support of this work.

Connected by Sight.[™]