

OUTSTANDING VERSATILITY

SEE LIFE TO THE MAX

iFS

1

000

Johnson Johnson vision

SEE LIFE TO THE MAX

Innovation at the core

The **iFS** advanced femtosecond laser is built from a legacy of innovative **IntraLase** technologies—a proven, trusted, and versatile platform available today.

- Proven results: Delivers greater precision and predictability for optimal patient outcomes compared to mechanical keratomes¹⁻⁴
- Proven versatility: Modular, upgradeable design allows multiple applications beyond LASIK flaps

A comprehensive platform of surgical capabilities

The **iFS** advanced femtosecond laser goes well beyond LASIK flaps to enable the creation of full individualized corneal incisions for your ophthalmic procedures utilizing a single laser system.

LASIK flaps

- Inlay pocket channels
- IntraLase-Enabled Keratoplasty (IEK) incisions
- Intracorneal ring segments

- Arcuate incisions
- Clear corneal and paracentesis
 incisions

The **iFS** laser is the ideal choice for your subspecialty

- Refractive surgery
- Corneal surgery
- Cataract surgery

The **iFS** laser system offers you the following treatment options:

Customizable and precise LASIK FLAP CREATION

2 Corneal PROCEDURES

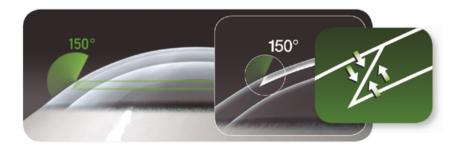
3 Customizable inlay POCKET CHANNELS

4 Bladeless ARCUATE INCISIONS

Customizable and precise LASIK FLAP CREATION

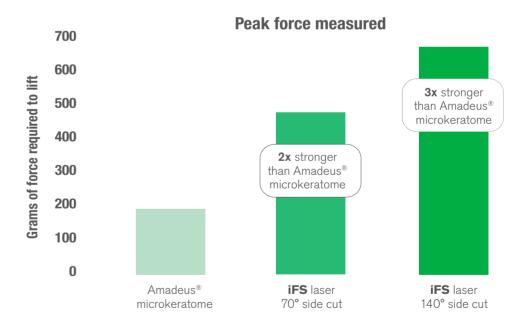
SEE LIFE TO THE MAX

Customizable and precise LASIK flap creation


The **iFS** laser system provides you with customization of all surgical parameters to fit the needs of your patients

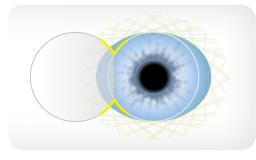
- Inverted bevel-in side cut up to 150° for optimal biomechanical stability⁵
- Elliptical flap option to maximize stromal bed exposure⁶
- Lower energy, tighter spot and line separation for smooth stromal beds and easy flap lifts^{5,6}
- Reduces risk of infection and lessens patient discomfort, as epithelial integrity is preserved^{5,6}

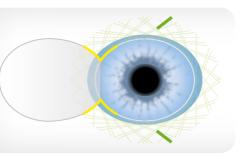
Benefits of inverted bevel-in side cut up to 150° vs standard side cut


- 3x more flap adhesion strength than the Amadeus® microkeratome⁷
- Increased flap stability post operatively⁷
- Fewer dry eye signs and symptoms than with the 30° side cut⁸

Inverted bevel-in side cut, customizable to 150°, promotes flap replacement, positioning, and adhesion for optimal biomechanical stability of the post-LASIK cornea.⁷

3-Month Comparative Measurement of Flap Tensile Strengths⁷


In New Zealand white rabbit eyes, three groups of flaps were created with either the Amadeus[®] microkeratome, **iFS** laser 70° side-cut angle, or **iFS** laser 140° side-cut angle. At 3 months, a force gauge was attached to a curved lens and pulled perpendicularly until the flap dehisced and peak force could be measured.



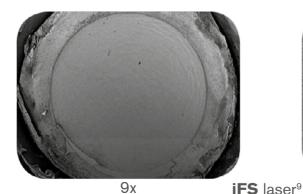
Elliptical flap option maximizes stromal bed exposure⁶ for full delivery of excimer ablation

STANDARD ROUND FLAP

ELLIPTICAL FLAP OPTION AVAILABLE WITH IFS LASER

• Follows the natural contour of the cornea, allowing the vital lamellar fibers to be preserved during flap creation^{6,9}

Low energy, tight spot and line separation for smooth stromal beds and easy flap lifts $^{\rm 5,6}$


Reduces risk of infection and lessens patient discomfort, as epithelial integrity is preserved^{5,6}

iFS laser offers

- low energy
- a tight spot and line separation

BENEFITS

- Results in smooth stromal beds for easier flap lift⁶
- Provides smoother flap edges to facilitate repositioning on the stroma⁴
- Helps minimizing inflammatory tissue reaction⁵
- May reduce flap creation time resulting in a higher patient comfort⁵

SEE LIFE TO THE MAX

Johnson Johnson vision

2 Corneal PROCEDURES

SEE LIFE TO THE MAX

Benefits of improved tissue alignment¹⁰

- Complex incision patterns, which are reproducible between donor and host cornea¹⁰
- Precisely shaped angled edges for complementary fit^{10,11}

- Zig-zag

- Unlimited pattern configurations including:
- Top hat

- Mushroom

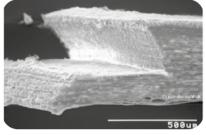
- - Half zig-zag
- Anterior side - Christmas tree

*Zig square image courtesy of Sheraz M. Daya, MD, Centre for Sight, UK

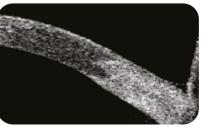
Speeds wound healing in full-thickness corneal transplants

- Better wound integrity and 7x higher resistance to wound leakage than manual techniques¹⁰
- Utilizing incisions with multiplanar pattern configuration ensures a snug fit that allows the use of less suture tension and facilitates wound healing^{10,12}

More control in intracorneal ring segments (ICRS)

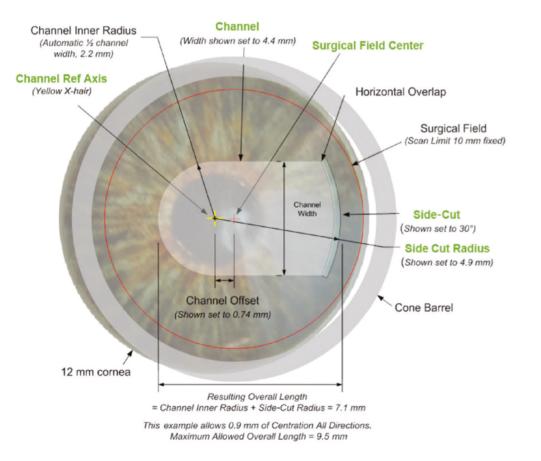

Precise channels for ICRS

Available adjustable parameters include channel width, surgical zone offset, channel depth, laser energy, and spot/line separation.


Customized channels for your patients' individual ICR anatomy. Create a better match between the created channel and various ring segment dimensions.

Optical coherence tomography (OCT) image of **iFS** laser-created zig-zag pattern performed on the cornea.¹²

Scanning electron microscope (SEM) image showing the precisely shaped angled edge.*

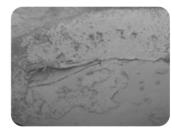

OCT image showing multiplanar pattern configuration to ensure a snug fit.¹²

$\begin{array}{c} \textbf{3} \\ \textbf{POCKET CHANNELS} \end{array}$

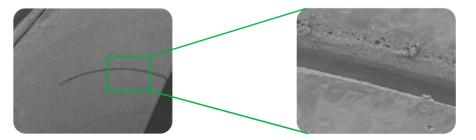
Design and create inlay pocket channels customized to your needs

- Features adjustable parameters such as pocket width, pocket offset, pocket depth, side-cut radius and side-cut angle¹³
- Performs customized pockets for each individual cornea and inlay¹³
- The pocket channels are created to match the various inlay dimensions¹³

Create customizable inlay pocket channels in the cornea of each patient through adjustable parameters, including channel width and offset and side-cut angle and radius.



ARCUATE INCISIONS

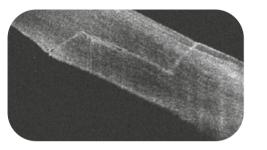

Greater precision and customization¹⁴

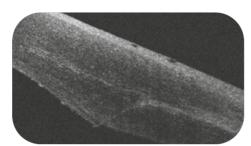
- Allows creation of intrastromal incisions¹³
- Individualizes each incision using customizable parameters for greater surgical confidence¹⁵
- Allows complete control of angles, placement, and orientations with micron-level accuracy¹⁵

Scanning Electron Microscopy image showing irregular arc pattern created with a manual blade¹⁵

SEM images showing very regular, arc-shaped penetrating arcuate incision with the **iFS** laser. Note: sharply cut epithelium and Bowman's layer¹⁵

Intrastromal arcuate incisions can potentially provide several clinical advantages


- Preserves corneal integrity with fewer stromal lamellae incised and Bowman's layer preserved reducing possible risks¹⁴
- Rapid recovery and stability of vision¹⁴


Customized CATARACT INCISIONS

Do even more with proven **iFS** technology

Laser Cataract Suite for the creation of intact, customized cataract incisions

- Full customization of all laser parameters to individualize multiplanar incision designs
- Multiplanar clear corneal and planar paracentesis incisions remain intact until you decide to open them

OCT side view image of the cornea after creation of a triplanar clear corneal incision. Note: incisions have a precise construction with clear, defined planes¹⁶

OCT image of 1-day postsurgical clear corneal incision¹⁶

A comparative study between manual and **iFS** laser-created Clear Corneal Inicisions (CCI) demonstrates:

- The **iFS** laser created a three-plane CCI which did not induce significant changes in simulated K or corneal higher-order wavefront aberrations over the mesopic pupil size.¹⁷
- There was no leakage at the end of the surgery with either technique as proven by the Seidel test, however, the CCI created by the **iFS** laser did not require stromal hydration of the incision lateral walls, which was always used after the manual CCI and required visible whitening of the stroma.¹⁷

iFS Femtosecond Laser

SYSTEM SPECIFICATIONS¹³

System Dimensions and Weight		
Height	60 in (1524 mm)	
Width	47 in (1194 mm)	
Length	41 in (1042 mm)	
Weight	865 lbs (410 kg)	
Crate Parameters	61 in (W) x 59 in (L) x 70 in (H)	
	(1549 mm x 1499 mm x 1778 mm)	
Shipping Weight	1462 lbs (663 kg)	
Shipping Contents	Console (Chassis, Beam Delivery Device, Video Microscope, Display Panel and Keyboard), Footswitch, System Master Keys, Interlock Connector, UPS System	
System Specifications		
Laser Type	Mode-locked, diode-pumped Nd:glass oscillator with a diode-pumped regenerative amplifier	
Pulse Repetition Rate	150 kHz	
Laser Pulse Duration	600 fs to 800 fs (±50 fs)	
Maximum Laser Pulse Peak Power	4.2 MW (0.8 MW)	
Central Laser Wavelength	1053 nm	
Remote Interlock	Yes	
Beam Delivery Device Height	Minimum 32.5 in (825.5 mm) (floor to applanation lens) Maximum 42.5 in (1042 mm) (floor to applanation lens)	
Energy Consumption	Approximat	ely 2400 BTU/HR = 703 Watts
	UPS — Apj	proximately 225 BTU/HR = 66 Watts
Chair Selection Criteria Requirements are driven by the vertical travel		When the BDD is at its lowest point in Z-down, the height of the floor to the applanation lens is 32.5 in (82.55 cm)
(Z-direction) of the Beam Delivery Device (BDD).		When the BDD is at its highest point in the Z-up, the height of the floor to the applanation lens is 42.5 in (104.14 cm)

SEE LIFE TO THE MAX

Femtosecond Laser

References

- Binder PS. One thousand consecutive IntraLase laser in situ keratomileusis flaps. J Cataract Refract Surg. 2006;32(6):962-969. REF2014RF0040.
- Kezirian GM, Stonecipher KG. Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis. J Cataract Refract Surg. 2004;30(4):804-811. REF2014RF0041.
- Stonecipher K, Ignacio TS, Stonecipher M. Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability. *Curr Opin Opthalmol.* 2006;17(4):368-372. REF2018RF0006.
- Tanna M, Schallhorn SC, Hettinger KA. Femtosecond laser versus mechanical microkeratome: a retrospective comparison of visual outcomes at 3 months. *J Refract Surg.* 2009;25(suppl 7):S668-S671. REF2014RF0044.
- Binder PS. AMO's new **iFS** advanced femtosecond laser: faster, safer, more versatile. *Refract Eyecare*. 2008. REF2015RF0045.
- Guttman C. Accumulating research evidence highlights benefits of fifth-generation IntraLase femtosecond laser. *Euro Times*. 2009;14(2):14. REF2015RF0047.
- Knorz MC, Vossmerbaeumer U. Comparison of flap adhesion strength using the Amadeus microkeratome and the IntraLase **iFS** femtosecond laser in rabbits. *J Refract Surg.* 2008;24(9):875-878. REF2014RF0042.
- Donnenfeld E. Preservation of corneal innervation with femtosecond laser inverted sidecut flaps. *Poster ARVO* 2010. REF2015CT0036.

For healthcare professionals only. Please reference the Instructions for Use for a complete list of Indications and Important Safety Information and contact our specialists in case of any question.

- Binder PS. Stromal bed smoothness and visual outcomes. *Refract Eyecare*. June 2009:26. REF2015RF0046.
- Steinert RF. Using IntraLase to improve penetrating keratoplasty. *Refract Eyecare*. 2007; February. REF2014RF0050.
- Price FW, et al. Deep anterior lamellar keratoplasty with femtosecond-laser zigzag incisions. J Cat Refr Surg 2009; 35:804-808. REF2014RF0048.
- Farid M, Steinert RF. Deep anterior lamellar keratoplasty performed with the femtosecond laser zigzag incision for the treatment of stromal corneal pathology and ectatic disease. *J Cat Refr Surg* 2009; 35:809-813. REF2015RF0068.
- iFS Advanced Femtosecond Laser System Operator's Manual 0150-0157, Rev. D 0419, Apr. 2019. REF2022RF4002.
- Rückl T, et al. Femtosecond laser–assisted intrastromal arcuate keratotomy to reduce corneal astigmatism. J Cataract Refract Surg 2013; 39:528–538. REF2015OTH0741.
- Hardten D, et al. Creating bladeless arcuate incisions in cataract surgery. Presentation 2012.09.21_RF5842. REF2015RF0067.
- Data on file 155. Clear corneal incisions clinical data. 2013: REF2014RF0004.
- Serrao S, et al. New technique for femtosecond laser creation of clear corneal incisions for cataract surgery J Cataract Refract Surg 2017; 43:80–86. REF2017RF0065.

© Johnson & Johnson Surgical Vision, Inc. 2022. PP2021CT4049

Johnson Johnson vision